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Abstract-A vector Galerkin’s method based on the transverse 11. FORMULATIONS 
electric fields ( E  formulation) is formulated and presented. The 
general results are applied to a simple step index fiber with 
large core-cladding index differences. 

The vector wave equations for the are 

(1) 

I. INTRODUCTION 

F the many numerical methods available for yield- 0 ing guided mode solutions for practical interested 
dielectric structures of an arbitrary shape, the 
Bubnov-Galerkin method [l], so-called series expansion 
method, has been one of the simplest techniques for the 
simulation and modeling of optical guided-wave devices. 
The utility of the method depends highly on the careful 
choice of the basis functions. Various schemes of the basis 
functions have been proposed and applied to waveguide 
devices with different geometry and structure [2]-[4]. A 
thrust of recent research is to extend the present Galerkin 
method to the approximation of the vectorial wave propa- 
gation. Successful implementation of the vector Galerkin’s 
method has been reported on [5] .  

However, almost all of the published literature men- 
tioned above, except for [4], restricts the solution of the 
wave equation to a finite domain and chooses the trigono- 
metric function as basis functions. Unfortunately, this 
kind of basis function does not satisfy the boundary condi- 
tions at infinity, a weakness that will present a problem 
for modes near cutoff, at which time the fields do not 
decay exponentially. So, not surprisingly, the results of the 
Galerkin method based on trigonometric functions de- 
pend critically on the choice of that finite domain and it is 
difficult to know how to choose the size of the artificial 
d‘bmain. 

As a consequence, we present in this paper an altema- 
tive formulation for the vector Galerkin’s method with 
Hermite-Gaussian basis functions. The choice of this 
kind of basis function has several advantages. This ap- 
proach not only forms a complete orthonormal set but 
also satisfies the boundary conditions at infinity. The new 
method is based on the transverse electric fields ( E  for- 
mulation). 
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where k = w\/.ol.o is the wave number in free space and 
n = n ( x ,  y) is the refractive index of the guiding medium. 
The operator V can be separated into longitude and 
transverse components, 

rl v = 2- + v,. 
d.? 

In case a propagating wave of dependence becomes 
exp ( - j  pz), the Laplacian operator tums into the form of 
V 2  = d 2 / d x 2  + d2/dy2 - p2 .  Suppose that the refrac- 
tive index n varies slowly along the direction of the wave 
propagation 2, that is, dn /dz  = 0. The desired coupled 
equations from the transverse components of (1) can be 
approximated by 

d2E, d2Ex + ( n 2 k 2  - p 2 ) E x  d X 2 + d y Z  

d2Ey d2Ey + ( n 2 k 2  - p 2 ) E y  dn2+dy2 
+ Ey- ]  d In ( n )  = 0. (4) 

dY 
A solution of the coupled equations (3 )  and (4) can be 

obtained by expanding Ex and Ey as 
N, NY 

p=o u = o  

Nx NY 

Ey = Bpu@p(x)@u(y) ( 6 )  
p=o u = o  

are Hermite-Gaussian functions of 

E, = Apu@p(x)@u(y) ( 5 )  

where $ and 
order p, U, 

H p ( x )  exp ( - -x2/2)  

d,  
$ < x >  = (7) 

and the same is true with &(y); H, is again the Hermite 
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polynomial of order p. The normalizing constants d, and 
d ,  are chosen to be 

d = * 1 / 4 .  m. 2P/2 @a) 

d ,  = r1I4. m. 2”/2 (8b) 

so that the orthogonality condition becomes 

m H,(x)~,.(x) exp ( - x 2 )  
dw = Sp+< (9) Lx dPdP, 

and the same is true with d ,  again. 
According to [5],  we must remove the derivatives of the 

logarithm of the refractive index in (3) and (4) using 
integration by parts, a removal that will naturally dispel 
the residual terms before the coupled partial differential 
equations are converted into the desired set of linear 
equations. Substitute (5 )  and (6) into (7) and (8), multiply 
(7) and (8) by 4p,.4,,,., and integrate the whole space, and 
we have the following coupled linear equations: 

with the individual matrix elements 
1 

k 2  sp’u’,pv = -{  -(p + v + 1 ~ s p , p ~ 6 , , . ’  
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To be able to combine (10) and (11) into a conventional 
matrix form, it is necessary to convert the double-index 
notation into a single-index notation and redefine a vector 
X consisting of elements A,, and BpY. The two equation 
systems (10) and (11) become the standard matrix eigen- 
value form 

cx= ( q x  (16) 

with the eigenvalue ( p / k ) ’  and eigenvector X. 

111. NUMERICAL APPLICATIONS 
To assess and test the accuracy of the vector Galerkin’s 

method based on the E field, we simulated a step-index 
optical-fiber of circular cross section and compared our 
results with the known exact solution. The circular fiber 
has the following parameters: core radius a = 0.5 pm, 
vacuum wavelength A = 1 pm, core index n, = 2, and 
cladding index n2 = 1. We limited ourselves to the EH,, 
mode, whose exact eigenvalue is P / k  = 1.447945. Using 
16 Hermite-Gaussian basis functions in each direction, 
we computed from the electric vector wave equations the 
eigenvalue p / k  = 1.4543844, which is different from the 
exact value by 0.4%. Because the integrals appearing in 
(121415) are done numerically, the error in the integra- 
tion may contribute to the uncertainty in the result. As 
the exact analytical solutions are available in this test 
case, the size of the enclosed region can be predicted 
accurately so that the results based on trigonometric basis 
functions in [5] are better than ours. However, we still 
believe that Hermite-Gaussian functions are more ade- 
quate for the basis functions than trigonometric functions, 
provided that the test cases are not amenable to exact 
analysis and the numerical integration in equations 
(12)-(15) can be avoided. 

IV. CONCLUSIONS 
To find approximate solutions of the vector wave equa- 

tion to general dielectric optical waveguides, we provide 
an alternative formulation method in this paper. We tested 

our method against the exact solution of a circular step- 
index fiber and found reasonable agreement in P / k  to 
0.4% with 16 basis functions in each of the two orthogo- 
nal directions. Furthermore, it is noticed that the Her- 
mite-Gaussian basis functions can overcome the diffi- 
culties in the choice of the adequate size of the enclosed 
domain. The difficulties inherent in sine-series expansion 
methods stem from the unsatisfactory boundary condi- 
tions at infinity. The unique capacity will help us make 
more accurate prediction of the modal propagation con- 
stant and field distribution in optical waveguides, which 
are characterized by large index-differences between adja- 
cent regions. Further research should be continued to 
include the full wave analysis of strongly guiding wave- 
guides comprised of arbitrary materials with any shapes or 
index profiles. 
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