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Abstrucf- The guided mode characteristics of metal-clad 
graded-index waveguides are generally determined by complex 
eigenvalue equations or perturbative methods. However, these 
methods either require several iterations in the complex plane or 
are only suited to the class of waveguides whose guided field can 
be described analytically. We describe a method of calculating 
complex propagation constants for metal-clad graded-index 
waveguides under very general but weakly guiding conditions. 
The method, based on Galerkin’s formalism using trigonometric 
basis functions, allows arbitrary inhomogeneous and complex 
refractive index profdes. Applications to three generally used 
waveguide models show our approach to be in good agreement 
with other analytical or numerical methods. 

I. INTRODUCTION 
ETAL-CLAD waveguides are important elements in M integrated optics because of the great number of ap- 

plications that they offer. Metallic layers frequently serve 
as electrodes to interface integrated optical components with 
other electrical or electronic circuit systems. In addition, 
metallic films are also useful for the protection of optical 
devices against stray radiation and heat dissipation. Evidently, 
metallic overlays will introduce additional absorption or modal 
loss, a feature considered to be undesirable in most applica- 
tions. But recently, it was noticed that TM mode attenuation 
is approximately an order of magnitude greater than TE 
mode attenuation, and the loss dependence on the mode 
number is a strong function of the refractive index profile in 
optical waveguides [ 11-[5]. These interesting characteristics 
have resulted in some useful applications, such as mode and 
polarization filtering [6]-[7]. Since total attenuation of metal- 
clad waveguides consists of ohmic losses in the metallic 
layers and scattering losses at the interfaces, graded-index slab 
waveguides (GISW) are expected to have lower losses than 
step-index slab waveguides (SISW). Thus, it is important to 
investigate the influence of metallic films on the propagation 
and attenuation characteristics of metal-clad graded-index slab 
waveguides. 

Analysis of metal-clad waveguides is more complicated due 
to the fact that the refractive indices of metals of practical 
interest such as gold, silver, and aluminum are complex 
at optical frequencies, with the result that the propagation 
constants of all possible guided modes in waveguides become 
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complex. However, it is essential to have a simple and fast 
method that can provide a detailed knowledge of modal 
characteristics of the metal-clad waveguides for the purpose of 
controlling the fabrication process and realizing certain modal 
properties. Many kinds of analytical or numerical methods 
[1]-[12] have been proposed to analyze step-index [2], [8], 
[9] and graded-index [3]-[5], [lo]-[ 121, which includes linear, 
exponential, parabolic, and gaussian index profiles, metal- 
clad waveguides, The general approach is required to solve 
the mode complex transcendental eigenvalue equation by 
numerical methods such as Newton’s method, which involves 
several iterations and great quantities of computations, espe- 
cially for graded-index metal-clad waveguides. An analytical 
and a highly accurate numerical method to obtain the mode 
dispersion and attenuation of metal-clad graded-index planar 
waveguides is proposed by Al-Bader and Jamid [4]. While this 
approach both provides accurate values for the propagation 
constants of different modes and demonstrates explicitly how 
the waveguide and material parameters determine the guided 
field, it is only suited to the class of waveguide in which the 
guided field can be described analytically and the appropriate 
field solution ,often involves some special functions such as 
Airy, Bessel, and parabolic cylinder functions. She and Xie 
[5] have presented a multilayer approximation method for 
analyzing propagation characteristics and losses of metal-clad 
graded-index planar waveguides with the aid of recursion 
formulas. The accuracy and efficiency of this scheme depend 
largely on a good initial estimate of the values of the normal- 
ized propagation constants and the size of subintervals in the 
core region. In the above-mentioned methods, there still exists 
a common weakness, characterized by the impossibility to find 
all complex propagation constants of guided modes at one time 
that renders these methods laborious and cumbersome. 

Recently, a very general, simple, and easy approach to use 
as described by Henry and Verbeek [13] has emerged as a 
powerful method and has been successfully implemented for 
many optical waveguide structures [ 121-[15]. The method, 
often referred to as Galerkin’s method [16], expands the un- 
known wave field in a complete set of orthogonal functions and 
uses this expansion to convert a linear differential equation into 
a set of simultaneous linear equations, i.e. the sophisticated 
matrix eigenvalue equation. The matrix equation will yield 
all the guided modes of the waveguides without any initial 
estimate or recurrence. Being able to yield the wave equation 
directly, the method does not involve subdividing the refractive 
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index profile and additional laborious calculations. In an earlier 
article, Gallawa [12] used Galerkin's method with Hermite- 
Gaussian basis functions to calculate the complex propagation 
constants for nonuniform optical waveguides, which the core 
is lossy and the imaginary part of the refractive index is much 
smaller than the real part. Therefore, in this article, we try 
to use the different basis function, the trigonometric function, 
to deal with the modal characteristic problem of metal-clad 
waveguides, in which the lossy component is the cladding 
and the real and imaginary parts of the refractive index are 
approximately of the same order in magnitude. 

The theory of this method is given in Section 11. In Section 
I11 we establish the accuracy of our numerical results by com- 
paring them with other published results, including analytical 
and numerical, and satisfactory results are obtained. Finally, a 
brief summary is given in Section IV. 

11. THEORY 

Under the weakly guiding condition, the scalar wave equa- 
tion for the TE and TM modes can be written as [4] 

where $ denotes Ev for the TE case and n(x)E, for the 
TM case. Guided waves are assumed to propagate in the +z- 
direction, having a z-dependence and temporal as exp[ i (wt  - 
Pz)] .  Here, ,f3 = Icon, is the propagation constant, Ico = 27r/X0 
corresponds to the free space wave number, and ne is the 
unknown effective index for the modes in question. The 
refractive index distribution of the slab waveguides is taken 
to be 

(2) 

where f(x) represents the profile shape function of the graded- 
index film, and the complex quantity n& refers to the refractive 
index of the metal cladding. In the following, the formulation 
is limited to the TE mode. The TM mode can, of course, be 
treated similarly. Galerkin's method calls for the expansion of 
$ in terms of a set of known orthogonal basis functions. We 
now express $(x) as a sum of N trigonometric basis functions: 

n"x) = f(x) x 2 0 
= n & x < ~  

N 

,=1 
(3) 

where 

Compared with other orthogonal functions, the choice of 
sine functions has the advantage of using only one kind of 
real function. In addition, for the majority of refractive-index 
profiles of current interest, the integrals can be expressed in a 
simple closed functional form without any special restrictions, 
especially on the refractive index profile. Whereas, we have to 
emphasize that due to their unsatisfactory boundary conditions 
at infinity, in applying the trigonometric basis function it is 
necessary to restrict the waveguide structure to a finite domain 
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large enough to ensure that the fields of guided modes of 
interest are nearly negligible on these artificial boundaries. 
Unfortunately, to our knowledge, there seem to be no gen- 
eral or clear-cut rules of guidance provided by any authors 
regarding how the optimum value of the enclosed region 
L, is determined. Thus, the accuracy of the trigonometric 
function expansion depends critically on the choice of the 
enclosed region L, and the number of terms used in the 
expansion N .  So, we enclose the waveguide structure in the 
finite boundary bi < x < be, that is, within a range of 
width Lx = be - bi. In order to apply our formulation to 
the symmetric and asymmetric refractive index profiles, we 
introduce two factors, bi and be, which are the x-coordinates, 
where the field is forced to zero. The function in (4) satisfies 
the orthogonality conditions 

Substituting (3) into (1) and simplifying yield 

By multiplying (6) by +,(x), integrating over the enclosed 
domain, and using the orthogonality relation Equation (5),  the 
governing linear equation is 

N N 

(7) 
,=1 ,= I 

with A,, defined as 

Obviously, the problem has been reduced to solving the 
well-known matrix eigenvalue (7) and (8). The eigenvalues of 
the square matrix A are the squared values of propagation 
constants P for both guided and continuum modes. The 
associated eigenvectors C,, can be substituted into (3) to 
approximate the field. Each of the elements of the matrix 
A will be complex by virtue of the metal cladding, the 
eigenvalues and eigenvectors are therefore complex. Finding 
the eigenvalues and eigenvectors of a complex matrix is simple 
and fast by means of modern computer routines. 

III. EXAMPLES AND NUMERICAL RESULTS 
In order to assess the accuracy of our numerical method de- 

scribed in the previous section, we have calculated the complex 
propagation constant for gold-cladding planar waveguides with 
the asymmetric linear, truncated-parabolic, and exponential 
index profiles as depicted in Fig. 1. The profile shape functions 
are given as follows: 

1) linear profile 

(9) 
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Fig. 1. 
guides considered in Section ID. 

Schematic diagram of index profiles for the three metal-clad wave- 

TABLE I 
COMPLEX PROPAGATION CONSTANTS OF THE L o m ~  Two TE MODES AS 
A FUNCTION OF THE ENCLOSED DOMAIN L ,  FOR THE METALXLAD 

WAVEGUIDE rn LW mrn PROFILE AND a = 5pm. HERE, THE 
NUMBER OF EXPANSION TERMS USED IN GALERICIN‘s METHOD IS N = 300 

Tb 
14.9729 - i0.3393(-4) 

14.9729 - i0.3395(-4) 

14 9729 - i0.3408(<) 

14.9729 - i0.341q-4) 

14.9729 - i0.3421(-4) 

14 9729 - i0.342q-4) 

14.9729 - i0.3441(-4) 

14.9729 - i0.344q-4) 

=I 

14.9181 - i0.3405(-4) 
14.9185 - i0.3301(-4) 

14.9178 - i0.3498(4) 

14.9184 - i0.3362(4) 
14.9185 - i0.333q-4) 

14.9185 - i0.333q-4) 

14.9185 - i0.33q-4) 

14.9185 - i03355(-4) 

14.9729 - i0 .3w-4)  14.9185 - i0.3382(4) 

2) truncated-parabolic profile 

3) exponential profile 

f(z) = n:[l- 2A(1 - exp(-z/a)] z 2 0, (11) 

where the whveguide index parameters are n: = 2.29592, 
ni  = 2.25, and the gold cladding nk = -10.3 -21.0 
at X = 6.6328 pm. Galerkin’s method may appear time- 
consying and cprnbersome because numerical integration is 
required. In fact, for trigonometric basis functions, numerical 
integratioq c q  be avoided in a vast majority of cases. The 
integrals involved in (8) can all be calculated analytically for 
these three profiles, as outlined in Appendix. At first glance 
it may appear the confusion that (Al) is not consistent with 
( 5 )  and all the closed form solutions given in Appendix for 
the right side of (8) are functions of b; but not functions of 
z. However, when explicitly substituting the limits into the 
equations in Appendix and after some simple mathematical 

operations, one quickly finds out that the expressions are 
exactly the same. Clearly, the numerical errors resulting from 
the size of a subdivision for index profiles and initial trial 
values are avoided because the integration of (8) is for the 
whole index profile without any subdivision or approximation. 
Although the matrix eigenvalue problem (7) can be solved 
in a great many ways, we prefer using the well-developed 
software package, PC-MATLABTM (a command “eig”), to 
find out the desired eigenvalues and eigenvectors because it 
can easily deal with real, complex, or even defective matrices. 
Table I lists the complex propagation constants of the lowest 
two “E modes as a function of the enclosed domain L, for the 
metal-clad waveguide with linear index profile and a = 5 pm. 
According to the data, we show how to designate the optimum 
size of the enclosed domain L,. First, we choose two values 
arbitrarily (normally two or three multiples of the a value) for 
the lower boundary b, and the upper boundary be as initial 
values. Then, we fix one side of the boundary and adjust the 
other side (increase or decrease), i.e., enlarging or reducing the 
width of the enclosed domain L,. Following the process, we 
recompute the eigenmatrix A to find the desired eigenvalues 
in each case and determine the optimum boundary value of 
the adjustable side. Finally, the same procedure is used to 
find the boundary value of another side. Once the optimum 
boundary values of both sides are determined, the best size 
of the enclosed domain L, is also decided. In the process 
of defining optimum, the reasonable accuracy between the 
lower-order modes and higher-order modes, especially for the 
imaginary part of the complex propagation constant, is an 
important criterion. Therefore, we select the value of [-1, 81 
as the enclosed domain for the linear refractive index profile 
with a = 5pm. Moreover, if the accuracy of the complex 
propagation constant is not the only criterion, the trade-off of 
the accuracy between the complex propagation constant and 
the modal field have to be considered twice. We have used 
the above-mentioned rule of thumb in determining a suitable 
size L, for other refractive index profiles. Tables II-VI1 list the 
analytical and numerical values, obtained by using the methods 
of [4], [5], and ours, of the complex propagation constants of 
the lowest two or three TE modes for various index profiles. 
In order to make a comparison with the previous published 
data [4], we do not list the complex propagation constants for 
all guided modes, but some of data is for only two modes 
and some of it is for three modes. According to [17], we 
have made some modifications about the data for the parabolic 
and exponential index profiles given in [4] and rewrite them 
in Tables N-VII. From these tables, we observe that the 
agreement of the results between our method and other exact 
numerical methods is good in all cases. It is apparent that the 
expansion terms used in this article are much more than [ 121 
and that the majority of exbansion terms are used to obtain the 
convergence of the imaginary part of the complex propagation 
constants. If we take the square root of the waveguide index 
parameters as given in the above and obtain nl = 1.5 152,nz = 
1.5, and n, = 0.1556 -23.2131, it shows that we require more 
expansion terms to meet the slower decay rates in the region 
of metal cladding. Furthermore, Galerkin’s method is more 
flexible than any other approximation method [4], [5] because 

1 7 1 ‘ I  
~ 

I 7 
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TABLE II 
ANALYTICAL AND NUMERICAL VALUES OBTAINED USING DIFFERENT APPROXIMATIONS OF THE COMPLEX PROPAGATION CONSTANTS OF MODES FOR 

THE WAVEGUIDE WITH LINEAR INDEX PROFILE FOR a = 5 pm. ENCLOSED D~MAIN S m  IS bi = - 1 pm, be = 8 pm, L, = 9 pm 

IO 100 200 300 

14.9729- 14.9729- 14.9729- 14.9663- 14.9729- 14.9729- 14.9729- 

i0.3393(4) io 3395(4) i0.3395(4) iO.9356(4) iO.3891(4) i0.3476(4) i0.3421(4) 

TEI 14.9181- 14.9185- 14.9188- 14.9116- 14.9184- 14.9185- 14.9185- 

i0.3405(4) i0.3301(4) iO.3301(4) i0.8587(4) i0.3794(4) i0.3390(4) i0.3336(4) 

TABLE III 

WAVEGUIDE WITH LINEAR INDEX PROFILE FOR a = 8 pm. THE ENCLOSED DOMAIN SE IS b; = -1pm, be = 10 pm, L, = 1 1  pm 
ANALYTICAL AND NUMERICAL VALUES OBTAINED USING DIFFERENT APPROXIMA~ONS OF THE COMPLEX PROPAGATION CONSTANTS OF MODES FOR THE 

a=8pm 

mode B (analytical) B (numerical) B (numerical) B ( 0 4  

number 141 141 151 
N 

IO 100 200 300 

TEO 14.9923- 14.9923- 14.5922- 14.9854- 14.9922- 14.9923- 14.9923- 

io 21 1 8 ( 4 )  i0.2119(4) iO.Z119(4) i0.9040(4) i0.3677(4) iO.ZZos(4) i0.2148(4) 

TEi 14.9523- 14.9523- 14.9522- 14.9449- 14.9522- 14.9523- 14 9523- 

i0.2123(4) i0.2126(4) i0.2125(4) io 8871(4) i0.2622(4) i0.2213(4) iO.2154(4) 

TEz 14.9195- 14.9195- 14.91%- 14.9116- 14.9194- 14.9195- I4 9195- 

io 2128(4) i0.2110(4) iO.ZIlO(4) io 8588(-4) iO.2616(4) i0.2208(4) i0.2149(4) 

TABLE N 
h A L r n c A L  AND NUMERICAL VALUES OBTAINED USING DIFFERENT APPROXIMATIONS OF THE COMPLEX PROPAGATION CONSTANTS OF TE MODES FOR THE 

WAVEGUIDE WITH PARABOLIC INDEX PROFILE FOR a = 5 pm. Tm ENCLOSED DOMAIN S m  IS b, = - lpm, be = 8 pm, L, = 9pm 

IO 100 200 300 

TEO 150031- 15.0031- 14.9985- 15.0030- 15.0031- 15.0031- 

iO.2343(4) i0.2314(4) i0.7153(4) i0.2654(4) i0.2369(4) i0.2331(4) 

TEt 149465- 14.9467- 14.9395- 14.9466- 14.9467- 14.9467- 

i0.3526(4) i0.3461(4) io. l005(-3) i0.397q-4) i0.3544(4) i0.3488(4) 

it can obtain any extent of accuracy in numerical results only 
by increasing the number of terms in the series expansion, (3). 

IV. CONCLUSION 
We have presented a simple and easy numerical method 

for to use in analyzing guided-wave characteristics of optical 
graded-index planar waveguides with metal cladding by means 
of series expansions. The complex propagation constants are 
found from the sophisticated matrix eigenvalue equation. Here, 
the integrals that appear in the matrix elements can all be 
solved analytically, a fact that leads to increase in the com- 
putation speed and avoidance of the numerical integration 
error as a result of choosing trigonometric functions as basis 
functions. Whereas, the need for an enclosed domain is a major 
disadvantage when using the trigonometric basis function. The 

selection of the best value of L, is not an easy task, it is made 
by trial and error and case by case. However, we have provided 
a rule-of-thumb in dktermining the best size L, and we see 
a new combination of the boundary parameters has made 
the rule-of-thumb more flexible. Furthermore, the numerical 
results show that once the suitable size L, is selected, the 
sine function expansion is still accurate, compelling and viable. 
Since this method is inherently stationary and quite versatile, it 
can be easily applied to various kinds of metal-clad waveguide 
devices such as mode filters and polarizers of practical interest. 

APPENDIX 
The closed form of the last term on the right-hand side of 

(8) for the three index profiles can be expressed as 

1 1 ' I  
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TABLE V 

WAVEGUIDE WITH PARABOLIC INDEX PROFILE FOR a = 8 pm. THE ENCLOSED DOMAIN SIZE IS b, = - lpm, be = 10 pm, L,  = 11 pm 
ANALYTICAL AND NUMERICAL VALUES OBTAINED USING DIFFERENT APPROXIMATIONS OF THE COMPLEX PROPAGATION CONSTANTS OF TE MODES FOR THE 

N 
IO 100 200 300 

T 6  15.0187- 15.0187- 15,0150- 15.0187- 15.0187- 15.0187- 

iO.l156(4) iO.l145(4) i0.5362(4) iO.1414(4) iO.1193(4) iO.1161(4) 

TEI 14.9834- 14.9834- 14.9775- 149834- 14.9834- 14.9834- 

iO.l738(4) iO.1728(4) i0.7682(4) i0.2133(4) i0.17W-4) iO.1751(4) 

E 2  14.9480- 14.9480- 14.9401- 14.9479- 14.9480- 14.9480- 

i0.2178(4) iO.2164(4) i0.9218(4) iO.2672(4) iO.U54(4) iO.ZIM(4) 

TABLE VI 

WAVEGUIDE WITH EXPONENTIAL INDEX PROFILE FOR a = 3pm. THE ENCLOSED DOMAIN SIZE IS b, = - 1 pm, b, = 14 pm, L,  = 15 pm. 
ANALYTICAL AND NUMERICAL VALUES OBTAINED USING DIFFERENT APPROXIMATIONS OF THE COMPLEX PROPAGATION CONSTANTS OF TE MODES FOR THE 

mode P(analytical) P(numerical) 

number 141 [41 

N 
IO 100 200 300 

TEO 14.9615- 14.9615- 14.9460- 14.%13- 14.9615- 14.%15- 

i0.3296(4) i0.3369(4) iO.4497(-3) i0.4639(4) i0.3682(4) i0.3472(-4) 

TEt 14 9208- 14.9208- 14 91 IS- 14.9207- 14.9208- 14.9208- 

iO.186q-4) io 192q-4) i0.2573(-3) i0.2647(4) i0.2102(4) i0.1982(4) 

TEz 14.9014- 14.9014- 14.8%5- 14.9013- 14.9013- 14.9013- 

i0.9047(-5) iO.9296(-5) iO.l355(4) iO.1319(4) i0.1048(4) i0.9884(-5) 

TABLE VII 

WAVEGUIDE W H  EXPONENTIAL INDEX PROFILE FOR a = 5 pm. THE ENCLOSED DOMAIN SIZE IS b, = - 1 pm, be = 13 pm, L ,  = 14 pm. 
ANALYTICAL AND NUMERICAL VALUES OBTAINED USING DIFFERENT APPROXIMATTONS OF THE COMPLEX PROPAGATION CONSTANTS OF TE MODES FOR THE 

IO 100 200 300 

Tb 14.9820- 14.9820- 14.9829- 14.9710- 14.9818- 14.9819- 14.9820- 

i0.2357(4) i0.2385(4) i0.23 12(4) i0.2682(-3) i0.3285(4) i0.2573(4) io 2449(-l) 

TEi 14.9459- 14.9459- 14.9466- 14.9373- 14.9458- 14 9459- 14.9459- 

i0.1684(4) iO.1714(4) i0.3460(-4) i0.2004(-3) i0.2361(4) io 1849(-4) iO.l760(4) 

TE2 14.9236- 14.9236- 14.9171- 14.9235- 14.9235- 14.9236- 

io. 1 Iw-4) io. 1221(4) i0.1480(-3) iO.1689(4) iO.l322(4) io. 1259(4) 

1) For a linear profile: 

2 
/d,(z)dv(z)dx = - L z  

(x - bi)/2 - sin[2m(x - bi)]/4m m = n  

m # n 
sin[(m + n)(bi - x)]/[2(m + n)] (AI) 
- sin[(m - n)(b;  - z)]/[2(m - n)] 

,x2/4 - cos[2m(b; - z)]/8m2 
+ z sin[2m(bi - x)]/4m 

- cos[(m + n)(bi - x)]/2(m + n)2 
+ cos[(m - n)(bi - x)]/2(m - n)' 
+xsin[(m + n)(b; - x)]/2[(m + n) 
- x sin[(m - n)(b;  - x)]/2(m - n) , 

2) For truncated-parabolic profile: 
and 

2 
L, 

.2d,(x). $b(z)dz = - J 
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